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1.1
Examples of the two types of energy flow: boiling water with heat; evaporate water with a vacuum.

1.2
We assume E to be the energy, S to be the entropy and n to be the mole of the unit segment l0.

(i) The first equation gives that

S(E,L, n) = nl0γ exp

(
θE

nl0

)
− nl0γ

[
1

2

(
L

nl0

)2

+
nl0
L

− 3

2

]
(1)

Thus we find

S(λE, λL, λn) = λnl0γ exp

(
θλE

λnl0

)
− λnl0γ

[
1

2

(
λL

λnl0

)2

+
λnl0
λL

− 3

2

]
= λS(E,L, n). (2)

This means the entropy is an extensive quantity. However, the second equation does not give an extensive
entropy S. Therefore the first equation is acceptable while the second one is not.

(ii)
f

T
=

(
∂S

∂L

)
n,E

= nl0γ

(
L

n2l20
− nl0

L2

)
(3)

For conciseness, denote L/n by length per mole l. The tension is a function of T and l,

f = γT

(
l

l0
− l20

l2

)
. (4)

1.3
The variational theorem in the energy representation is

(δE)S,X ⩾ 0 (5)

which indicates that S and x are invariant during the virtual displacement.

E = E(1) + E(2), (6)

(δE)S,X = (δE(1))S,X + (δE(2))S,X =

(
∂E(1)

∂S(1)

)
S,X

(δS(1))S,X +

(
∂E(2)

∂S(2)

)
S,X

(δS(2))S,X (7)
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Also we have
S = S(1) + S(2) (8)

(δS)S,X = (δS(1))S,X + (δS(2))S,X = 0, (9)
and (

∂E

∂S

)
X

= T. (10)

Thus
(δE)S,X = T (1)(δS(1))S,X − T (2)(δS(1))S,X. (11)

Therefore
(T (1) − T (2))(δS(1))S,X ⩾ 0 (12)

exists for all positive and negative (δS(1))S,X. Thus T (1) = T (2).

1.4
Because of the thermal equilibrium, the final temperature T

(1)
f = T

(2)
f . By definition,

1

T
=

(
∂S

∂E

)
n,l

= γθ exp

(
θE

nl0

)
(13)

Then
E = −nl0

θ
ln(γθT ). (14)

Thus

E = E1 + E2 = −n(1)l0
θ

ln(γθT (1))− n(2)l0
θ

ln(γθT (2)) = −n(1)l0
θ

ln(γθTf )−
n(2)l0
θ

ln(γθTf ) (15)

Finally we obtain

lnTf =
n(1) lnT (1) + n(2) lnT (2)

n(1) + n(2)
(16)

The final temperature is

Tf = exp

(
n(1) lnT (1) + n(2) lnT (2)

n(1) + n(2)

)
(17)

and the final energies for the two sub systems are

E
(1)
f =− n(1)l0

θ
ln(γθ)

(
n(1) lnT (1) + n(2) lnT (2)

n(1) + n(2)

)
(18)

E
(2)
f =− n(2)l0

θ
ln(γθ)

(
n(1) lnT (1) + n(2) lnT (2)

n(1) + n(2)

)
(19)

1.5
We suppose that all the walls and the pistons are adiabatic, and the total system is isolated from particle
exchange with the environment. If we reversibly change pA and/or pB , we give mechanical work to the total
system. And naturally after the change of the positions of the pistons, the system redistribute the particle
numbers in the three cabins.

Instead of doing mechanical work, of course we can reversibly pump the particles to the desired concentra-
tion in the three cabins. While doing this, the pistons will move reversibly to their final places automatically,
as if we only moved the pistons as described above. In this way, we associate the process of doing mechanical
work with an equivalent process of changing the concentration of particles.

As another example, we can think of the reversible battery whose work is associated with the change of
concentrations of the species.
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1.6
Since the entropy S is a natural function of E, V, n,

dS =
1

T
dE +

p

T
dV − µ

T
dn (20)

we propose two quantities

f =S − 1

T
E, (21)

g =S − 1

T
E +

µ

T
n. (22)

Thus

df = Ed

(
1

T

)
+

p

T
dV − µ

T
dn, (23)

dg = Ed

(
1

T

)
+

p

T
dV − nd

(µ

T

)
(24)

Therefore we have natural functions of f(1/T, V, n) and g(1/T, V, µ/T ).
Note: We suspect that the symbol v in the question and in the context above in the textbook (eg.

(p, v, n))is a typo of V , because there is no prior definition of that.

1.7
(i) From

dH = TdS + V dp+ µdn (25)

we have
dS =

1

T
dH − V dp− µdn (26)

which means S is a natural function of (H, p, n). We can also find that(
∂S

∂H

)
p,n

=
1

T
> 0 (27)

so that if we add an internal constraint to the system (H, p, n) without affect these three quantities, we have,

S(H, p, n) > S′ = S(H, p, n; internal constraint). (28)

There must be a system (H ′, p, n; internal constraint) that has the same entropy S,

S(H, p, n) = S(H ′, p, n; internal constraint). (29)

Thus
S(H ′, p, n; internal constraint) > S(H, p, n; internal constraint) (30)

and notice that they are under the same condition p, n and the same internal constraint. Because of inequality
(27), H ′ > H. That is,

H(S, p, n; internal constraint) > H(S, p, n) (31)

Therefore
(δH)S,p,n ⩾ 0, (∆H)S,p,n > 0. (32)
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(ii) Under the condition of constant (T, V, n), if we add some internal constraint to the system, we have
to introduce work into the system, and it could be reversible. Thus

(∆S)T,V,n =
(∆E)T,V,n −Wi.c.

T
<

(∆E)T,V,n

T
(33)

Obviously,
[∆(E − TS)]T,V,n > 0 (34)

That is,
(∆A)T,V,n > 0 (35)

(iii) Under the condition of constant (T, p, n), similarly, we can introduce work associated with the internal
constraint into the system reversibly. Thus

(∆S)T,p,n =
(∆H)T,p,n −Wi.c.

T
<

(∆H)T,p,n

T
(36)

[∆(H − TS)]T,p,n > 0 (37)

(∆G)T,p,n > 0 (38)

1.8
Cp = T

(
∂S

∂T

)
p,n

(39)

(
∂Cp

∂p

)
T,n

=T

[
∂

∂p

(
∂S

∂T

)
p,n

]
T,n

=T

[
∂

∂T

(
∂S

∂p

)
T,n

]
p,n

(40)

From
dG = −SdT + V dp+ µdn (41)

we get the relation (
∂S

∂p

)
T,n

= −
(
∂V

∂T

)
p,n

. (42)

Thus (
∂Cp

∂p

)
T,n

= −T

[
∂

∂T

(
∂V

∂T

)
p,n

]
p,n

= −T

(
∂2V

∂T 2

)
p,n

. (43)

1.9
Since z = z(x, y),

dz =

(
∂z

∂x

)
y

dx+

(
∂z

∂y

)
x

dy (44)

or written as (
∂z

∂x

)
y

dx = dz −
(
∂z

∂y

)
x

dy (45)
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Because z = z(x, y), we also have x = x(y, z). Therefore

dx =

(
∂x

∂y

)
z

dy +

(
∂x

∂z

)
y

dz (46)

(
∂z

∂x

)
y

[(
∂x

∂y

)
z

dy +

(
∂x

∂z

)
y

dz

]
= dz −

(
∂z

∂y

)
x

dy (47)

∵
(
∂z

∂x

)
y

(
∂x

∂z

)
y

= 1, (48)

∴
(
∂z

∂x

)
y

(
∂x

∂y

)
z

dy + dz = dz −
(
∂z

∂y

)
x

dy (49)

Therefore (
∂z

∂x

)
y

(
∂x

∂y

)
z

= −
(
∂z

∂y

)
x

. (50)

1.10
For a homogeneous function of order n f(x1, ..., xn),

f(λx1, ..., λxn) = λnf(x1, ..., xn), (51)(
∂f(λx1, ..., λxn)

∂λ

)
x1,...,xn

= nλn−1f(x1, ..., xn), (52)

On the other hand,(
∂f(λx1, ..., λxn)

∂λ

)
x1,...,xn

=

n∑
i=1

(
∂f(λx1, ..., λxn)

∂(λxi)

)
λxj ,j ̸=i

(
∂λxi

∂λ

)
xi

=

n∑
i=1

(
∂f(λx1, ..., λxn)

∂(λxi)

)
λxj ,j ̸=i

xi (53)

Set λ = 1,

nf(x1, ..., xn) =

n∑
i=1

(
∂f(x1, ..., xn)

∂xi

)
xj ,j ̸=i

xi. (54)

1.11
X and Y are extensive, so they are first-order homogeneous functions. For a derived function X/Y ,(

X

Y

)
(λx) ≡ X(λx)

Y (λx)
=

λX(x)

λY (x)
=

X(x)

Y (x)
=

(
X

Y

)
(x). (55)

Thus X/Y is intensive.
For ∂X/∂Y , λ regarded as a constant,(

∂X

∂Y

)
(λx) ≡ ∂X(λx)

∂Y (λx)
=

∂[λX(x)]

∂[λY (x)]
=

λ∂X(x)

λ∂Y (x)
=

(
∂X

∂Y

)
(x). (56)

Thus ∂X/∂Y is intensive.
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1.12
Because E is extensive, from

dE = TdS + fdL+ µdn (57)
we get

E = TS + fL+ µn. (58)
Thus

0 = SdT + Ldf + ndµ. (59)

1.13
(i) Given

E =
θS2L

n2
, (60)

we adopt the equation (57),

µ =

(
∂E

∂n

)
S,L

= −2θS2L

n3
. (61)

T =

(
∂E

∂S

)
L,n

=
2θSL

n2
, (62)

S =
n2T

2θL
. (63)

Thus
µ = −nT 2

2θL
= µ(T, L/n). (64)

(ii)

f =

(
∂E

∂L

)
S,n

=
θS2

n2
=

n2T 2

4θL2
= f(T, L/n). (65)

dµ = −nT

θL
dT +

n2T 2

2θL2
d(L/n), (66)

df =
n2T

2θL2
dT − n3T 2

2θL3
d(L/n) (67)

Therefore

SdT + Ldf + ndµ =
n2T

2θL
dT +

n2T

2θL
dT − n3T 2

2θL2
d(L/n)− n2T

θL
dT +

n3T 2

2θL2
d(L/n) = 0. (68)

1.14
Since

G = µn (69)
and

dG = −SdT + V dp, (70)
we can have

dµ = −sdT + vdp. (71)
Because

dp =

(
∂p

∂v

)
T

dv +

(
∂p

∂T

)
v

dT, (72)
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dµ = −sdT + v

(
∂p

∂v

)
T

dv + v

(
∂p

∂T

)
v

dT. (73)

Thus (
∂µ

∂v

)
T

= v

(
∂p

∂v

)
T

. (74)

1.15
(i) The construction has been shown in question 1.6, equation (23), (24).

(ii) First considering E = E(β, V, n),

(dE)V =

(
∂E

∂β

)
n,V

(dβ)V +

(
∂E

∂n

)
β,V

(dn)V . (75)

Then, because it is legitimate to consider µ = µ(T, V, n), we can consider n = n(β, βµ, V ) as well. This gives

(dn)V =

(
∂n

∂β

)
βµ,V

(dβ)V +

(
∂n

∂βµ

)
β,V

(dβµ)V . (76)

Combine equation (75) and (76),

(dE)V =

(
∂E

∂β

)
n,V

(dβ)V +

(
∂E

∂n

)
β,V

(
∂n

∂β

)
βµ,V

(dβ)V +

(
∂E

∂n

)
β,V

(
∂n

∂βµ

)
β,V

(dβµ)V . (77)

Thus (
∂E

∂β

)
βµ,V

=

(
∂E

∂β

)
n,V

+

(
∂E

∂n

)
β,V

(
∂n

∂β

)
βµ,V

. (78)

Using (
∂n

∂β

)
βµ,V

= −
(

∂n

∂βµ

)
β,V

(
∂βµ

∂β

)
n,V

(79)

we finally get (
∂E

∂β

)
βµ,V

=

(
∂E

∂β

)
n,V

−
(
∂E

∂n

)
β,V

(
∂n

∂βµ

)
β,V

(
∂βµ

∂β

)
n,V

. (80)

1.16
Analog to the common definition of the heat capacity,

cl = T

(
∂s

∂T

)
l

(81)

(
∂cl
∂l

)
T

= T

[
∂

∂l

(
∂s

∂T

)
l

]
T

= T

[
∂

∂T

(
∂s

∂l

)
T

]
l

. (82)

Because dA = −SdT + fdL+ µdn from question 1.12,(
∂s

∂l

)
T

=

(
∂S

∂L

)
T,n

= −
(
∂f

∂T

)
L,n

= − l

θ
. (83)

Obviously (
∂cl
∂l

)
T

= T

[
∂

∂T

(
− l

θ

)]
l

= 0. (84)
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1.17
We have to design a reversible process that has the same initial and final states as that of the process described
in the question. The temperature holds constant, while f and l vary according to l = θf/T instead of a
sudden change. Thus

(dS)n,T =

(
∂S

∂f

)
n,T

df (85)

Because dG = −SdT − Ldf + µdn,(
∂S

∂f

)
n,T

=

(
∂L

∂T

)
n,f

= n

(
∂l

∂T

)
f

= −nθf

T 2
(86)

∆Sn,T =

∫ f+∆f

f

(
−nθf

T 2

)
df = − nθ

2T 2

[
2f∆f + (∆f)2

]
. (87)

1.18
Assume θi, i = 1, 2, ..., n are non-zero real constants. On the one hand,(

∂f(λθ1x1, ..., λ
θnxn)

∂λ

)
x1,...,xn

= f(x1, ..., xn), (88)

while on the other hand,(
∂f(λθ1x1, ..., λ

θnxn)

∂λ

)
x1,...,xn

=

n∑
i=1

(
∂f(λθ1x1, ..., λ

θnxn)

∂λθixi

)
λθjxj ,j ̸=i

θiλ
θi−1xi. (89)

Set λ = 1,
n∑

i=1

(
∂f(x1, ..., xn)

∂xi

)
xj ,j ̸=i

θixi = f(x1, ..., xn). (90)
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