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8.1

The orientational correlation function (u,(0)u.(t)) indicates the rotational correlation of the molecules. In
a gas phase, the molecules are allowed to rotate freely. In the figure 8.5 in the text, the peak at ~ 1 psec
indicates the molecule rotates back to its original direction, or has gone through a 27 rotation in ~ 1 psec.

However, in a liquid phase the rotation of a molecule can be limited, for it may frequently collide with its
neighbors to keep its original direction.

8.2

In a perfect T' = 0 crystal, the orientation of the molecules are frozen. Thus the orientational correlation
function should be % forever. However, if the temperature is above zero, molecules still have a chance to
rotate and flip with certain frequency. In such a situation, the orientational correlation function can slightly
decreases with time, and the speed of decreasing is related to the temperature. A sketch is shown in figure
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Figure 1: Orientational correlation function for a liquid.
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At) = / dr¥apN A(t; eV, pM)F eV, p)
:/ drNdp® At TV, p™) (A (N, pM) AN, p)

where indeed A(0;rY,p™V) = A(xY, p?).

(AVAA(t) =(A) / drNdpV A(t eV pN) (AN, pM)AEY, pV) —

- / dr¥ dpV (At e, pM) AN, pN) — (A21f (N, p")
—(A(1)A(0)) — (A)?
—0(1).

8.4

The rate equations are

dc

ddf = —kpaca(t) + kapcg(t)
C

Tf = kBACA(t) - k'ABCB(t)

and the initial condition is ¢4 (0) + ¢p(0) = ¢. Thus ca(t) + ¢p(t) = ¢. The rate equation reduces to

dc
d—: = —(kpa+kap)ca(t) + kapc.
The solution to this non-homogeneous linear differential equation is
kAB kAB —(k k t
calt) = ————c+ 0)— — A8 .| e=(kpatkan)t
( kpa +kap (©) kpa+kap
Because
(cB) _kpa
(ca)  Fkam
kap
c _ MaB
{ea = kpa+kap.

Therefore the solution (6) is
ca(t) = (ca) + [ca(0) — (ca)]e hmathan)t
Therefore

Aca(t) = ca(t) — (ca) = [ca(0) — (ca)]e”kBathar)t — Ac,(0)e (kpathan)t,

Let TT_gCln = kpa + kap, and the equation above becomes
Aca(t) = Acy (0)e 4/ ren,

8.5

Since
1, z<q",
0, z>q".

Hy(z) —{

(H ) / Hul(z dz/q*p(z)dzMzA.

o0 {ca) + {cB)
Obviously H?(2) = Ha(z). Thus (H2) = (Ha) = z4.

((0HA)?) = (HZ) — (Ha)> =24 — 2% =24(1 —2a) = za7B.



8.6
The notations are a little confusing in the text. By definition
na(t) = Halq(t)]. (15)

(na) = (Ha), (n})=(Ha), ((6na)*)={((0Ha)*). (16)

exp(—t/Tran) =(61.4(0)0n4(t))/((61.4)°)
(zazp) " ((na(0)na(t)) — (na)?)

=(zazp) " ((na(0)na(t)) — 23). (17)
The time derivative gives
Tran €XP(—t/Tran) = —(zazp) ™ (na(0)R4 (1)) (18)
Because
(na(0)na(t)) = (na(=t)na(0)) (19)
(nAO)ia (1)) = 5 (na(OInA®1) = S (nal-0)na(0)) = ~(ra(~Hna(0)) = ~(a©Omae).  (20)
Thus
Tran €XD(—t/Tran) = (2az5) ™ (4 (0)na(t)) (21)
8.7
We need to understand the initial rate in a way of limit,
Epa(0) = lim kpa(t) = lim 23 (0(0)3lq(0) — ¢')Hala(t)). (22)

In the limit ¢ — 0T, ¢(¢) = q(0) + v(0)¢t. Notice that Hglq(t)] = H[q(t) — ¢*], where H(z) is the Heaviside
function.

kpa(0) = lim " (v(0)6[q(0) — ¢*]H[v(0)t + ¢(0) — ¢*])

t—0+
= lim 3 (v(0)5[q(0) — ¢*]H[v(0)1])
=173 (v(0)3[q(0) — ¢ H[v(0)]) (23)

Notice that the initial velocity and the initial coordinates are not correlated.

kpa(0) = %<|v|><6<q— ). (25)

For the initial rate obtained from the transition state theory approximation, because

HY¥ D [q(t)] = H[v(0)] (26)
KOS = 231 (0(0)6[g(0) — ¢*]H[v(0)]) (27)

which is identical to equation (23), the expression for kg4 is exactly the same.
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8.8

From the Exercise 8.7 we know kgj ™) is calculated assuming no trajectories recrossed the transition states
after a short time. However, in fact there might be trajectories that recross the transition state from B side
back to A side. Therefore in reality the reaction rate kg4 should be lower than the approximation kgf .

The shorter the time is, the closer these two are.

8.9

Obviously,
/der(r, t)=N, / drNp(r,t) =1 (28)
Ulr; (1))

where Ulr;(t)] indicates an infinitesimal neighborhood of r;(t). These properties validate that p(r,t) has the
form

N
plest) = > 0l =1 (0] (29)
8.10
We can define a quantity k
N N
k(r,t) = Z v;(£)dfr —r;(1)] = Z £(t)d[r —r; (1)] (30)

Therefore

ot = ot
N d
- Z Vo[r —r;(t)] - (1)
N
== #;(t) - Vor —r;(t)]
j=1
N
=— V) #0r—r;(t)]
j=1
— V. K(r,1). (31)

Comparing with the example of an activated process, H[q] can be the density in the area ¢ < ¢*, and ¢ is
a generalized coordinate. In one dimension, §d(q — ¢*) is the divergence of the flux at the boundary ¢ = ¢*.
Therefore the equation H4[q] = —¢d(q — ¢*) resembles the equation of continuity.

8.11

Suppose P(r™(t),v™(0)) is the joint configurational distribution at time ¢ and time 0. By definition,

Pi(r1(t),r1(0)) = /drz(t) <oodry(t) / dry(0) - - - dry (0)P(r™ (£), vV (0)) (32)



By definition,

8.12

—AR?(t) :/dr TQ%P(r,t) = /dr r2DV2P(r,t)

=r?DVP(r,t)|o0 — / drDVr*VP(r,t)

=r?DVP(r,t)|oo — DV P(r, )]0 + / drDV?*r?P(r,t)

(39)

Because the distribution should be bounded in finite space, itself as well as its gradient should vanish at

infinity. Thus

%AR%S) = / drDV?*r?P(r,t) = 6 / drDP(r,t).
Since P(r,t) is normalized for any ¢, we have
iAR?(t) =6D
dt o
8.13
Since
d t
—AR%*(t) = 2/ dt(v(0) - v(t))
dt 0
and

(v(0) - v(1)) = (v*)e /T,

d \ 52 fa / 2 /
~ —t/T _ _ —t/T _
thR (t) ~ 2/0 (v)e = =2(v)T (e 1).

AR2(t) = 2(0?)72(e7 /™ — 1) + 2(v?)7t.
Given D ~ 1 x 107° cm?/s, AR?(t) = 6Dt,
3D = (v¥)1.
Because
(v?) = 3kpT/m,
mD

T =

" kgT

For a small molecule, m ~ Ngl x 1kg. At room temperature 7~ 300 K. Then 7 ~ 4 x 10713 s.
Figsure 2 shows the mean square displacement versus time with reduced units.

(40)
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Figure 2: Diffusion curve of particles in Exercise 8.13.
8.14
The perturbation is
AA == fiAi(0).
_ Tr [e AEFTAK) A (1)
A;(t) = [Tre—B(.%”-‘rAﬁf) }
r[e= A
— LT {e-ﬂ” [Aj(t) — (55t Ay (1) + A, OB
=(4;) = BUAA A; (1)) — (A;)(AA)] + O[(BAA)?]
AA;(t) =4A;(t) — (4;) = B Z fi{Ai(0)A;(t)) — Z filA;)(4) | +O(f?)
=6 fi0A:(0)54;(t)) + O(f?).
8.15

Since it is proved that
An(r,t) = 8 / ' (r') (5p(x', 0)5p(x, £))

According to Fick’s law

9 _ po?
an(r,t) = DV-<n(r,t),
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é _ ﬁ _ ’ ’ Q ’
() = 5 Ane,0) = 5 [ dr' () 2 (6o(x',0)00(r.) (54)
DV2n(r,t) = DB / dr' (') V2 (5p(r’, 0)3p(x, 1)) (55)
Since ®(r) is arbitraty external field, for any r’
%(6/}&’,0)6/}(1’, t)) = DV*{6p(r’,0)dp(r, t)) (56)
Thus 50
0 _ pv2e(e, 1), (57)
ot
8.16
First we calculate the response function at ¢ > 0,
d
X(t) = =B (0A(0)5A()) = B ((6.4))e™"". (58)
Then we start with .
AA(t)=f | di'x(t—1). (59)

t1

For the case t < t;, because x(t) = 0 when t < 0, AA(t) = 0.
For the case t; <t < tg,

ade -1 | dtx(t - 1) = 15716547 / e O (AR (1) (o)

ty

For the case t > to,

ta
AA(L) = f | dt'x(t =) = [B((04)%) (777 — ==/ (61)
t1
gradually fades to zero.

A demonstration of the deviation of A under different 7 is shown in figure 3. From the figure it can be seen
that if 7 <t — t1, the system will be driven immediately following the square perturbation; if 7 > to — t1,
the system will be perturbed and will restore slowly. 7 = t5 — t; should resemble a critical damping.

The energy absorbed is

mmz—/wﬁﬂwamz/wmﬁmﬂwzf " i)

) :ﬂizﬂfﬁﬁﬁkzﬂgﬁwafAﬁ@m
=1*8((04)?) (1= e /). (62)
8.17
Ifn =0,
;/OTdtem“t:;/OTdtzizl. (63)
If n # 0,
;ZéTdtem“t::mibr(em“T——l)::Zii;72snmnw172) (64)
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Figure 3: Response to a square pulse in Exercise 8.16.

im |2 [ a d o g |2 T/2 lm | ——| =0 6
. < —nwt| _ : <3 < 1 = 0.
wﬁgaTA te AT bmmw/ﬂ\w#gwa (65)
Thus when n # 0, wT — oo,
1t
- dt inwt - 0. 66
P, e o

8.18
First expand f(t) = 1 (foe ™! + fre™?),
(et = g2y [(a) + [ atnie)sa =)+ o) |

_zwt_ Zwt |: / th f e—zw(t t)+f*ezw(t t') )+O(f2):|}
(67)

abs() t{
By

Notice Chandler’s book has a typo in abs equation: a redundant minus sign. Use the result in Exercise 8.17,
and suppose w1 — oo.

abs(w) :;/OTdt{w (foe ™t — fre®t) [/ dt'x (¢’ f emwt=t) | preiw(t=t) )+O(f2)”
[ (puze ! o) +0(f3>]
SR | [ atne) (e - o) o

1P [ dnsinten + (). (68)

w‘?: 1\3‘§



8.19

Suppose A(t) obeyed simple harmonic oscillator dynamics,

LA — w34 (69)
The real solution to this differential equation is
A(t) = C'sin(wot) + D cos(wypt) (70)
A(t) = Cuwy cos(wot) — Dwg sin(wot) (71)
A(0) =D, A(0) = Cuwy (72)

Once the initial condition C and D given, the evolution of the system is determined. However, required by
statistical mechanics,

(AA) = (DCuwp) =0 (73)
Thus
(CD) = 0. (74)
The distribution of C' and D should be even for equilibrium, thus (C) = (D) = 0. Thus (6CéD) =0
0A(t) = 6C sin(wot) + 6D cos(wot), JA0) =6D (75)
(0A(0)0A(t)) =(0D[0C sin(wot) + d.D cos(wopt)])

(
((0D)? cos(wot) + 6CS D sin(wot))

((6D)?) cos(wot) + (6CSD) sin(wot)

((6D)?) cos(wot) = ((5A(0))?) cos(wot). (76)

8.20

The model described in section 8.8 in the text is an oscillator coupled to a random harmonic bath. The
target is to describe the dynamics of the oscillator. The Hamitonian of the system is

where

1
% me + V chyz (78)

Here y; are the normal modes of the harmonic bath. Because the bath is purely harmonic, the evolution and
response to evolving x is exactly linear. Thus the evolution of f can be written as

10 =ho+ [ Tt — () (79)
where JC (t t’)
b\t — /
wit—t) =4 Pae=m > 71 (80)
0, t<t.

From the Hamiltonian the equation of state is

mi(t) = fola(t)] + f(t) /dmt—t x(t') (81)



where fy comes from %)
fola] = -
] = ——.
0 dx

Plug in the equation (80), and notice that the time origin is 0,

mi(t) = )]+ fu(t) ﬁ/ dt'Cy(t

Integrated by part,

t

[ dt'Cy(t — tz(t') = — Cp(t — t')z (t) /th(tt) (t")dt'

:—Cb(O —|—Cb /Obt—t

Thus
mii(t) =folz ()] + fo(t) + BCH0)x(t) — BCH(E)z(0) — B / Colt — t')
—{folw(®)] + BCHO)a(t)} + [fo(t) — BCH(B)2(0)] — B / Cylt — t')

Define

V() = Viz) ~ 56Cu(0)a%(1)

SF(t) = fult) — BCH(H)(0)
and v

f[x(t)] = T T + BC(0)x(t).
Thus
mi(t) = flz(t)] + 6£(t) /3/ A Cy(t — 1)

Notice that the distribution of f;(¢) is Gaussian with mean value SCy(t)z(0) and variance Cy(t — t').

8.21
(i) Since

d2
mes z(t) = )]+ f(t) /dtC’bt—t T ()

= — ma*x(t) + 0f(t) 5/ dtht—t)d(i z(t')

multiply by z(0) and take the average on both side
d? 5

2z (@0)z(t)) = —&™(@(0)a(t)) — — | di'Cy(t - t')%(w(o)w(t)%

(ii) The Laplace transform gives

$20(s) — s(z2(0)) — (2(0)(0)) = —2C(s) — LCo(s) [50(5) — (2%(0))

10
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Required by statistical mechanics, (z(0)4(0)) = 0. Then

B = B =
&(s) = m0§8)<x2> )
s24 02 +5—Ch(s) 82 +@2+s—Cy(s)

m m

(iii) Assume
Cy(t) = Cy(0)e /7.

Consequently,

The cosine Fourier transform of (x(0)xz(t)) is

C(w) :/000 cos(wt)(z(0)z(t)) = %

1 [ iw + %C‘b(iw) .\ —iw + %C‘b(—iw) )
2] e + @2+ iw%é’b(iw) —w? +o?% — iw%é’b(—iw)
I : BCy(0) , BCy(0)
1 e miw 4+ 771) n T m(—iw +771) (22).
o iwi,ﬁcb(o)_l @ — i PO
L m(iw + 771) m(—iw + 771)
The function at w = @ should be a peak
. BCy(0 - BCy(0
by L |2 i ) A i T (%)
2 im—PC(0) i BC(0)
m(iw + 771) m(—io+771)
_ 1 [iwm(iw +771) + BCy(0) | —iwm(—iw +771) + BCy(0) ()
2 | i@BCy(0) —imBCy(0)
1 [2iomr ! 9
=3 liwpc) ] @
__m(?)
- BTCy(0)’

which indicates a strong absorption.

8.22

(96)

The corresponding sketches are shown in figure 4. Plot (a) shows a smooth decay, while plot (b) shows a
pattern of periodicity. This is because in the solid state, the particles may oscillate with a certain period
T. Plot (c) shows the decay in (v(0)v?(t)). Because (v?(t)) # 0, when T goes to infinity, (v?(0)v?(t)) —
(v%(0)) (v2(t)) = (v?)? nonzero. Plot (d) shows the direction of velocity coupling, exactly the three times as

that is shown in figure 1.
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(v(0) - v(t))

=

(=]

(a) An argon atom in the gas phase o) (b) An argon atom in the solid phase
(2]

(v(0) - v(t))

t t

(c) An argon atom in the solid phase (d) CO molecules in the solid phase

Figure 4: The sketches in Exercise 8.22.



8.23

Since

D= [Tty vy~ g [Tt = g (98)
TR —— (99)

At the time right after turning down the external electric field, the ensemble average of v? can be describes
by the temperature

3kpT
2y = . 100
(v?) = =2 (100)
Thus D
m
N ——. 101
T T (101)
8.24
At room temperature T~ 300K, 8 ~ 2.4 x 1020 J~1,
A ~1x107"m?/s. 102
SmBon x 107" m*/s (102)
8.25
Because
AR%*(t) = 6Dt (103)

Consider the particles doing a Brownian motion. For ¢ = 5psec, AR? = 3 A. Since r;(t) = /|ri(t) — r;(0)[2,
r;(t)/A satisfies x2(3) distribution. F\2(3)(5) = 0.828. Thus 17.2% particles have moved more than 5A.

8.26
Adopted from the official solution manual. (a) Solving the differential equations we get
Acy(t) = Aje ™M+ Bie 22! (104)
Acy(t) = Age M 4 Bye 2! (105)
where
1 1 2
Ao = 5[(1631 + ki3) + (k32 + ko3)] £ 5[(’631 + k13) — (ka2 + k23)] p + k13kas. (106)
(b)
A1 ~ k13 + k23 = Tt;;nsient (107)
k31kas + k13kaz 1
Ay g —— 2 = 2% — . 108
2 k13 + ka3 T (108)
Tr:nlx ~ k31 k32 + k32 klg =~ k31 —+ kgg < klg —+ k23 ~ Tt_,l sient - (109)
k13 + ka3 ki3 + ka3 ransien

Therefore the relaxation is dominated by Tyxp.-
(c) As shown above, the faster transient decay occurs on a time scale of (ki3 + ko3) ™! ~ k1_31 or k;f.
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(d) The two decay rates are analogous to the two rates in the reactive flux description:
Tmol = Ttransient <K Trxn- (110)

The connection can be made by imagining preparing the system at the transition state, i.e., in state 3. Then
the decay into states 1 and 2, ¢;(t) and cq(t), follow the two decay rates, one much faster than the other.
But ¢1(t) o« (5n4(0)dna(t)) by the regression hypothesis, and the time derivative of Ydn 4(0)dna(t)) is just
the flux in the reactive flux picture. In particular, 7, is on the order of k3; or ksz, and is the plateau value
for the reaction rate.

(e) This is similar to the transition state theory idea where e~#? is the probability o getting to the transition

states 3, and D o 1/n is the rate to cross the barrier 3 once there. As we showed previously,

Xn

KT o (Jo[)(6(g — ¢7)). (111)

8.27

From transition state theory, we still have

iz = 5. (ol) 01a(0) — ') (112)
T

because when ¢ — 0, the trajectories starting from region 3 do not have a chance to cross the barrier at ¢*.

8.28

(a) The RMS velocity of an argon atom in the vapor is

3kpT
vy =1/ nfj =43 x10%m/s. (113)

(b) The RMS velocity of an argon atom in the solution is the same as that in (a)

kpT
vl:vg:,/?’nfi =43 x10%m/s. (114)

(c¢) Because in the gas phase, the spaces of the particles are larger than [ = 10 A, the motion is in the inertial
regime

l
t=—=23x10"'?s = 2.3 psec. (115)
Ug
(d) Because in the solution, the particles are effected by the solvent molecules, the motion is in the diffusion
regime
l2
t=gp = 167 % 107%s = 167 psec. (116)
(e) In the solution,
mD

Trelax = 7 m
* kgT
1

(f) When 7o = 211, according to Stokes’ law D o< n~+,

=1.6x10""s = 1.6 x 1072 psec. (117)

to = 2t1 = 333 psec. (118)

The velocity is not influenced since the temperature does not change.
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